

Master class - Smart Water and Agriculture

Using waterpads Retention, recharge reuse Managing salinity

Master class – the outline

- What is water, agriculture and what is smart / Smart / S.M.A.R.T.
- From innovations to solutions for agriculture
- 'smart' solutions
 - Recovering water in Deyang (China)
 - Managing salinity with salt tolerant potatoes
 - Implementing Waterpads

first thoughts - agriculture

cycle first thoughts - water flow showering SOURCE shortage medicine taps Survival suitable Being thirst life Blue Hydrological drinking cooking

first thoughts

Smart

water

agriculture

What does smart (/Smart/S.M.A.R.T.) mean and how are we using this word?

Oxford dictionary – Smart :

Fashionable / Quick-witted intelligence / Capable of independent action

Smart water for agriculture

- **S** = Socially and environmentally viable
- M = Measurable, quantifiable (M&E)
- A = Affordable, financially and business wise feasible
- **R** = Replicable, upscalable
- T = Technically feasible

SMART Water Centres

- **S** = Simple
- M = Market based
- A = Affordable
- **R** = Repairable
- **T** = Technologies

What is water

'*Classical*' elements of nature Earth, Wind, Fire and Water

H20 - Molecule

Solid (ice), Liquid and Gas

Water evaporates, condenses, falls (gravitational flow)

,but also adheres and can counter gravitation

What is Agriculture

'Ager' 'Cultura' – land cultivation

Also defined as 'the art, the science and the business of producing crops and livestock'

Requirements are:

1. the elements of nature;

2. the human

, with the brain

Agriculture

Water

second thoughts

Water and Agriculture

- Natural physical environment
- Humans with their accumulated knowledge, skills, tools and their intelligence, i.e. the ability to <u>acquire</u> and <u>apply</u> these as means to gather sufficient water and food in a given specific 'context'

Matching Water and Food challenges with Solutions

By being <u>smart</u> - intelligent / capable of independent context specific action ...

Solutions

Magoye ripper – combing an innovation and practice (minimal tillage)

Smart is

- analysis, translating and applying

- combining innovations and practices to make them count/workable, i.e. <u>Solve</u> problems / induce development

(combing and scaling of) Solutions

Table 4. Overview of techniques described in this book

Technique				ograp itabili	hic ty*		Function					New or existing
#	Maincategory		Upper	Middle	Lower	Soil conservation	Recharge	Retention	Reuse	Micro-climate	Water quality	
1		Contour bunds	•	•		•						Existing
2		Grass strips	•			•					•	Existing
3		Gully plugging	•			•						Existing
4		Bench terraces	•			•						Existing
5		Stone bunds	•	•		•						Existing
6		Trapezoidal bunds		•	•		· •	. •				Existing
7		Tied ridges	•			•		•				New
8		Demi lunes		•		•						Existing
9		Tal ya trays			•							Existing
10		Double dug beds			•					•		New
11		Composting	•	•	•					•		New
12	٥	Bio-char	•	•	•							New
13	٥	Organic mulching	•	•	•			•		•		Existing
14		Plastic mulching		•	•					•		Existing
15	۵	Making use of invertebrates					•					New
16		Planting pits		•	•							Existing
17	8	Percolation ponds and contour trenches	•	•		•	•					New
18	0	Tube recharge	•				•					New
19	8	Subsurface dams	•	•	•		•	•	•			Existing
20	8	Sand dams		•	•		•		•			Existing
21	8	Sand dune water infiltration					•		•			New
22	G	Harvesting water from roads					•	•	•			Existing

(combing and scaling of) Solutions

Smart Water and Agriculture – References to solutions

- seeing is believing <u>www.thewaterchannel.tv</u> / <u>https://www.youtube.com/channel/UCNEgSbZYxVHgmMF-AH0D6Jg</u>
- reading is understanding <u>www.bebuffered.com</u> / <u>www.wocat.net</u> / <u>www.fao.org/publications/en</u> / <u>www.nwp.nl/_docs/SWS_2006.pdf</u>
- programmes / projects in action <u>www.smartcentregroup.com</u> / <u>www.facebook.com/smrtwtr</u> /

'smart' solutions

- Implementing Waterpads (link with water productivity and buffer management)
- Wetland park integrated with groundwater recharge and water supply in Deyang (link with buffer management/ 3R)
- Managing salinity with salt tolerant potatoes (irrigation and drainage challenges / link with sweet water productivity)

Waterpads – a water buffer solution

Water buffering...

Buffering water in landscapes - Road water harvesting in Amhara (Ethiopia)

Water buffering...

Buffering in soils – Rice husk mulching, Farmer Field School (Tanzania)

Buffering water in landscapes - Road water harvesting in Amhara (Ethiopia)

Water buffering...

Buffering in at root zone – Waterpads in open soil (Turkey)

Buffering in soils - Rice husk mulching, Farmer Field School (Tanzania)

Buffering water in landscapes - Road water harvesting in Amhara (Ethiopia)

Waterpads – a sandwich of hessian, polymers and paper Components:

A fully biodegradable water and nutrient buffer for plants

Waterpads

Application:

- (drip)irrigated agriculture
- different growing media
- different crops: annual / perennial, ornamental / edible
- reusability

Previous results

- Roses (The Netherlands): 36% yield increase
- Tomatoes (Spain): 51% yield increase; 37% water application reduction
- Citrus saplings (Pakistan): 53 % higher rate of foliage growth; 31% water application reduction

Waterpads in open soil

Waterpads in different substrates

Waterpads in practice

Waterpads from innovation - to - smart solution

Green pepper	AVG Yield/Slab	
	Total weight	Yield increase/decrease
	grams	% of 100%
Cocopeat %100	1441	
Cocopeat W %100	1682	17%
Cocopeat %75	1433	
Cocopeat W %75	1542	7%
Cocopeat %50	1134	
Cocopeat W % 50	1192	-17%
Perlit %100	729	
Perlit W100	826	13%
Perlit %75	618	
Perlit W %75	811	11%
Perlit %50	545	
Perlit W % 50	522	-28%

Green pepper

Higher Yields

Break even point after 2.5 seasons

Waterpads from innovation - to - smart solution

Green pepper	Water appli	Water savings	
	Liters	% of total	Liter/slab
Cocopeat %100	438	100%	
Cocopeat W %100	438	100%	
Cocopeat %75	330	-25%	108
Cocopeat W %75	330	-25%	108
Cocopeat %50	221	-50%	217
Cocopeat W % 50	221	-50%	217
Perlit %100	282	100%	
Perlit W100	282	100%	
Perlit %75	210	-26%	72
Perlit W %75	210	-26%	72
Perlit %50	140	-50%	142
Perlit W % 50	140	-50%	142

Lower water requirements

Green pepper

Waterpads from innovation - to - smart solution

Green pepper	AVG Yield/Slab	Yield	Water appli	cation	Water savings
	Total weight	increase/decrease			
	grams	% of 100%	Liters	% of total	Liter/slab
Cocopeat %100	1441		438	100%	
Cocopeat W %100	1682	17%	438	100%	
Cocopeat %75	1433		330	-25%	108
Cocopeat W %75	1542	7%	330	-25%	108
Cocopeat %50	1134		221	-50%	217
Cocopeat W % 50	1192	-17%	221	-50%	217
Perlit %100	729		282	100%	
Perlit W100	826	13%	282	100%	
Perlit %75	618		210	-26%	72
Perlit W %75	811	11%	210	-26%	72
Perlit %50	545		140	-50%	142
Perlit W % 50	522	-28%	140	-50%	142

Water productivity

Waterpads – Water productivity

Productivity:

- Water Plant / Soil Plant
 - Water can be as productive as its environment allows it to be (nutrients, microorganisms, soil organic matter, micro-climate ,etc.)
 Waterpads provide buffer for water and nutrients
- Farming practice and rational
 - Saving water
 - Saving land
 - Saving inputs

Roll out of a smart solution

Co-creation of knowledge and expertise

Farmer adaptation

Roll out of a smart solution 2017

Farmer adaptation

Roll out of a smart solution 2017

Research and development

1. Antep Pistachio Research Institute

2. Gap Agricultural Research Institute, (Olive, Pistachio and Pine tree plantation)

Smart Solution - Wetland park integrated with groundwater recharge and water supply in Deyang City, China

time lapse – 4 years

Smart Solution - Salt tolerant potatoes

Soil salinisation and sodicity a global problem - Billion hectares of affected lands

Salinity - (natural) Mineral Weathering - (artificial processes)Irrigation

Introduction of potatoes

- Saline soils, 4 12 dS/m
- Alternating sweet (/non-saline) water and brackish water, 0.8 dS/m
- Saving 10,000 m3/ha of sweet water
- Achieving above national average yields:
 - Total average 21ton/ha (5% increase)
 - Average of introduced variety compared with local variety on same plot 55% increase

Salinity

making and tasting non-saline, moderately saline and brine (/seawater)