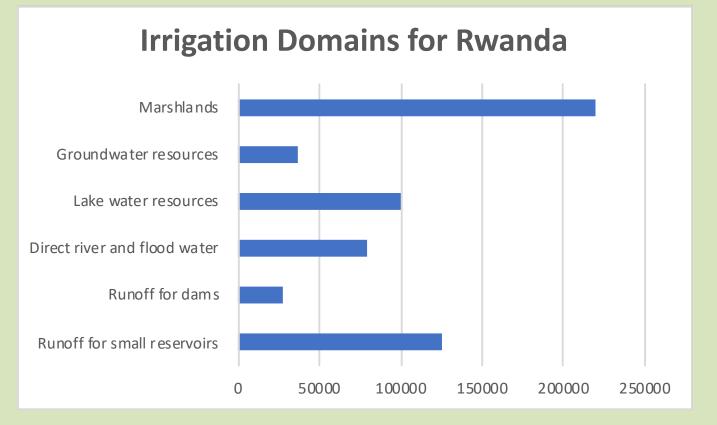


Household Pond Protocol Application

AN INITIATIVE OF THE BILLION DOLLAR BUSINESS ALLIANCE FOR RWH

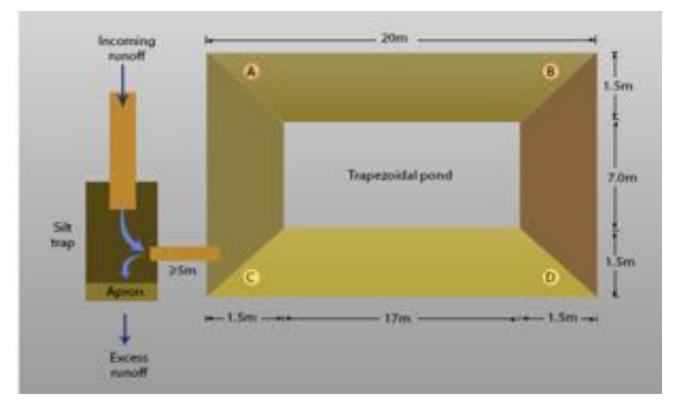
INTRODUCING BDBA


- BDBA: Initiated and launched in Addis Ababa in July 2015 during an International RWH Symposium
- Main Objective: Boost investments for scaling up farm pond technology for 1,000,000 smallholder farmers in SSA drylands.
- NB: 1M ponds is achievable in Kenya in < 5 years.

Signing and Kenyan Launch of the BDBA 11 April 2017

Makueni was the Pioneer County in Kenya to launch BDBA – November 2017

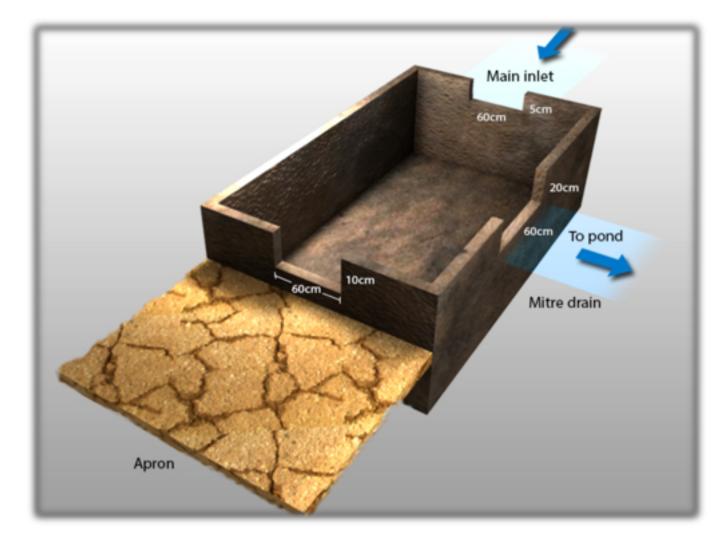
Why the BDBA focused on Farm Ponds


Objectives of HoPPA

- Develop protocol for pond systems design
- A platform for use by all practitioners
- Digital protocol
- Improvement of the efficiency of runoff pond system and thus increased yields

Why geo-referencing is important

- 1. To have a spatial overview of ponds
- 2. To enable partners assess implementation implications
- 3. To enable partners assess financial implications
- 4. To enable partners determine priority areas for implementation
- 5. To enable partners clearly see how they inter-relate

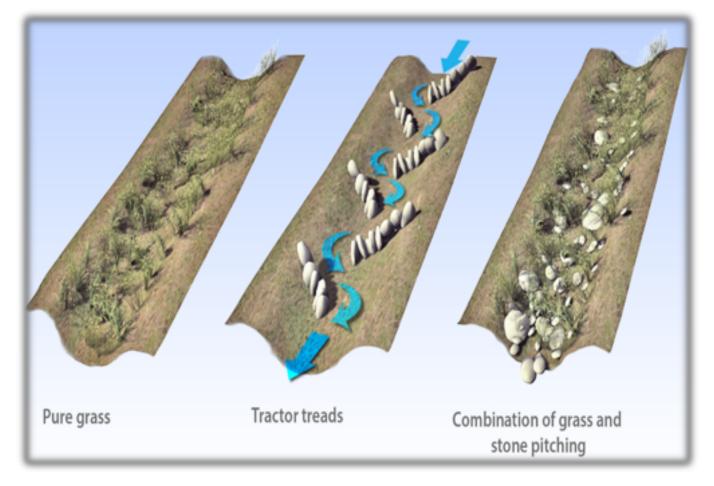

Individual Components sensed

- 1. Silt trap Turbidity
- 2. Reservoir Water levels, turbidity
- Overhead tank Water level & turbidity
- 4. Weather Temperature, humidity
- 5. Farm Soil moisture, crop growth

Pictorial Illustrations of the Pond

Automated Silt Trap

The inner dimensions (LxWxD) of the automated Silt Trap should be (1.2m x 0.9m x 0.9m) or approx. (4ft x 3 ft x 3ft)


Construction of automated Silt Trap Construction

Waterways

Below are the different ways of treating channels and waterways

AUTOMATION OF THE HOUSEHOLD POND PROTOCOL APPLICATION DIGITAL ADMINISTRATION

Potential Areas for Automation

- 1. Automation of Agricultural Production Systems
 - 1. Small Scale Supplementary Irrigation Systems (HoPPA).
 - 2. Large Scale Irrigation Schemes
 - 3. Flood based Farming Systems
- Livestock Production Systems
 Sensoring/Automation for Early Warning systems

Automation functions

- 1. Automated flow mechanism (infrastructural)
- 2. Pumping without sensing
- 3. Pumping with sensing (Smart Phone)
- 4. Monitoring of crop performance
- 5. Monitoring of farm security
- 6. Project monitoring

FARM POND ENTERPRISES

- 1. High Value crops
- 2. Trees nurseries & transplanting
- 3. Poultry production
- 4. Bee keeping
- 5. Fisheries

Financing Options based on land holdings, pond size & livelihood status

Farm pond size	Land size	Poverty Index	Financing model	Level of subsidy
SMALL 50-100m ³	(½ - 1 acre)	High	Safety net (grant-based)	50-75%
MEDIUM 100- 250m ³	(1-2 acre)	Medium	Subsidy (grant/credit)	25-50%
BIG 250-1000m ³	(>2 acres)	Low	Self-financing (credit)	0-25%

Conclusion

- The farm pond is a premier technology as it creates water independence at household level
- It is a widely scale-able water harvesting intervention given its low infrastructural complexity.
- Possible to automate the systems at very modest and competitive costs.
- The social impact on will be tangible i.r.t. food security, household income.