

Water Productivity

Lenneke Knoop April 13, 2017

Who am I

- Wageningen University Tropical landuse
- Internship in 2006
- Communication embedded in MetaMeta workflow

Goals and program

- Get an idea on Water Productivity
- Water Productivity in the Dutch policy
- Data vs Implementation
- Your own Water Productivity Challenge
- MetaMeta and the master class series on water productivity

What is Water Productivity?

Take a minute to write your idea on water productivity in one sentence down on a post it

Water challenges: Did you know that?

- Of all land that is irrigated, 20% is too salty to farm. This means
 1.6 million hectares are lost every year.
- In just over a decade we lost groundwater equivalent to 40 million Olympic-size swimming pools.
- Due to human activity, many deltas are sinking 5 times faster than sea levels are rising.

Agriculture

 Double the amount of food production for the world by the end of this century > less water available.

Agriculture is the biggest water consumer with **70%**

of the available fresh water

Source: Shiklomanov 2000.

Dutch Policy and Water goals

Why focus on Water Productivity

- Each project has its own indicators
- Difficult to compare
- Impossible to say something about efficient water use on farm, basin, regional and country level.
- With Water Productivity as indicator, it will be possible to compare the water use in different projects/regions/countries, resulting in a reliable overview of water use worldwide.

- Bangladesh
- <u>Benin</u>
- <u>Ethiopia</u> (food security)
- Ghana
- Indonesia
- Kenya
- Mali

COLUMN TWO IS NOT

- Mozambique
- <u>Palestine territories</u>
- <u>Rwanda</u>
- South Sudan
- Yemen

What is Water Productivity?

- Amount of crop production we can obtain from a volume of water (crop per drop) e.g. kg crop per cubic meter water.
- Water efficiency is not the same as water productivity
 - Efficiency represents the percentage or ratio of output divided by input, both with the same units.
 - Productivity is a different term and refers to what we can produce from a unit of input, it is also a ratio of output to input but both do not need to have the same units, e.g. WP is 50 kg grains per 1 m³ of water.
- Yield in money vs kg?

Databases

- Remote sensing measuring evapotranspiration and biomass
- Resulting in maps representing the potential of water productivity of a certain crop

2.6.1

Differences in 1 area, the Indus

- WP Pakistan: 1000 l for 1 kg
- WP India: 1000 | for 1.4 kg
- Why??
- Potential?
- Important: check reality to see what is going on

Global Water Productivity Score (GWPS) – wheat

COLUMN THE OWNER

FAO database

http://www.fao.org/in-action/remote-sensing-for-water-productivity/en/

Data component	Temporal resolution	Level I (250m) Africa and Near East	Level II (100m) 18 countries and 4 River Basins	Level III (30m) 4 pilot areas of ~100,000 ha
Actual ET (separate E and T)	Decadal	×	×	x
Above ground biomass production	Decadal / Seasonal	x	x	x
Crop calendars	Seasonal		x	x
Harvest Index	Seasonal		x	x
Reference ET (20 km resolution)	Daily	×		
Precipitation (5 km resolution)	Daily	×		
Land cover / Crop classification (level specific method)	Seasonal	X	×	×
 Level 1 – For major land cover Total Biomass Water Product Biomass Water Productivity u Biomass Water Productivity u Water Productivity Score 	classes: ivity under rainfed condit under Irrigated cond	tions ditions		
Level 2 – For • Total Crop • Rainfed C • Irrigated C	three main cereals Water Productivity rop Water Productiv Crop Water Productiv	(maize, rice, wheat): , vity (under rainfed con ivity (under Irrigated co	ditions) onditions)	
	Lev •	el 3 – For all major cro Rainfed Crop Water Pro	ops in the scheme / sul oductivity (under rainfe	b-basin d conditions)

minkater

- Irrigated Crop Water Productivity (under Irrigated conditions) Economic Water Productivity
- ٠

Database then what? Knowledge to implementation

- How can farmers, NGOs, policy makers use this database?
- What needs to happen to transfer knowledge to implementation?
- What are the applications?
- Open access?

Discussion assignment in 2 groups

- 1. What is the applicability of Water Productivity and such databases for farmers?
- 2. How is Water Productivity useful for water managers / decision makers at river basin scale?

Draw upon own experience. Think about challenges, opportunities, needs

Example SWA Kenya

- Smart Water for Agriculture in Kenya, funded by Dutch embassy
- Targeting 20,000 farmers through smart water solutions
- Increasing water productivity

Challenges

- Access to data (instead actual evapotranspiration gross amount of water used)
- Higher WP is not first thing on farmers mind (reducing costs in terms of labour, fertilizer etc.)
- Water availability and distribution seems more important to address
- Social relevance, where to invest to improve livelihoods?

Concluding remarks

- Promising database
- Common indicator has advantages
- But... there so much more than a database
- Need to invest in applications and knowledge / experience sharing
- Ground checking is very very important

Water Productivity Challenge

- Who has the reached the highest water productivity of her/his own plant at the end of the internship ?
- Think about:
- Evaporation (permeable pots)
- Fertilizer
- Water buffers
- Quick yield vs large quantities of water
- Soil
- Temperature
- Etc. etc.

(all the second second

Setup Master classes

- Appr. 3 hours
- 20 participants
- 1st part content, presentations
- 2nd part discussion, cooperation
- Located at host (where possible)
- Outputs on www.thewaterchannel.tv/waterproductivity
- Announcements shared by mail, NWP newsletter
- Registration

Master Class 2: Water productivity in rain fed agriculture

May 10 (Wednesday), 16:30 – 19:15, hosted by RAIN

- 1. In-situ solutions, examples Uganda, 3R (RAIN)
- 2. Managing green water
- 3. Landscape approach, examples (Justdiggit)

Master Class 3: Water productivity and basin management

May 31 (Wednesday), 16:30 – 19:15, hosted by MetaMeta

- 1. Managing blue water
 - Applications in irrigation
- 2. Link to groundwater management (RAIN / Acacia Water)
- 3. Link to value chains and trademarks
- 4. Policy levels (zooming out again)