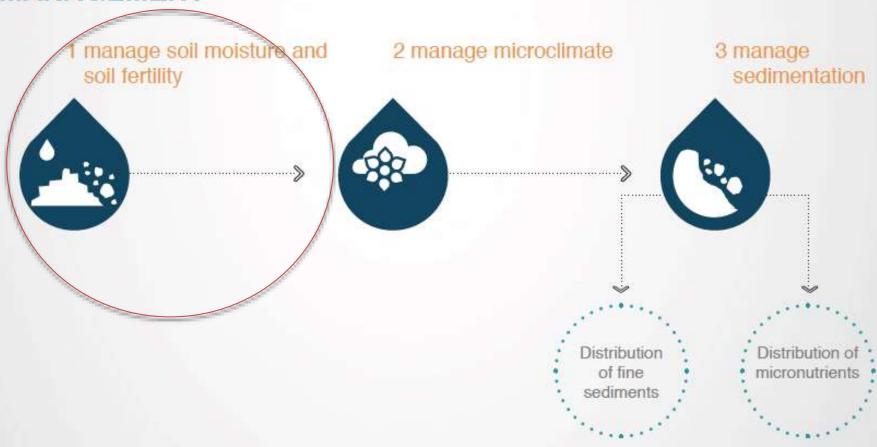
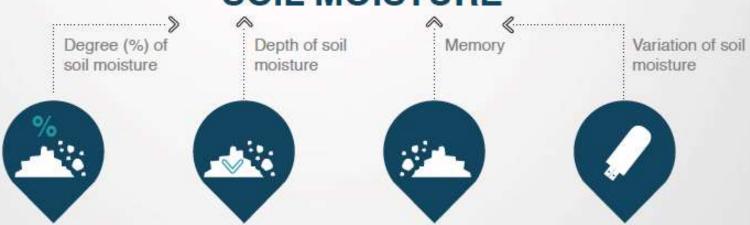


Efficient distribution and use of soil moisture and ecosystem services



ECOSYSTEM SERVICES MANAGEMENT


Soil Moisture and Ecosystems Studies

Why?

- To better understand issues and ecosystem services of soil moisture
 - Moisture movement in space and time (incl capilary rise)
 - Link to water stress or root zone water logging > result of current mesqa system
 - Link to soil fertility
- To complement groundwater and crop (AquaCrop) modelling for the entire area
- To evaluate proposed pilot on soil moisture
 - Pilot mesqa (with field canal)
 - Control mesqa

SOIL MOISTURE

Clay: slow but high capillary rise

(up to 2,5m2)

Silt: fast but medium capillary rise

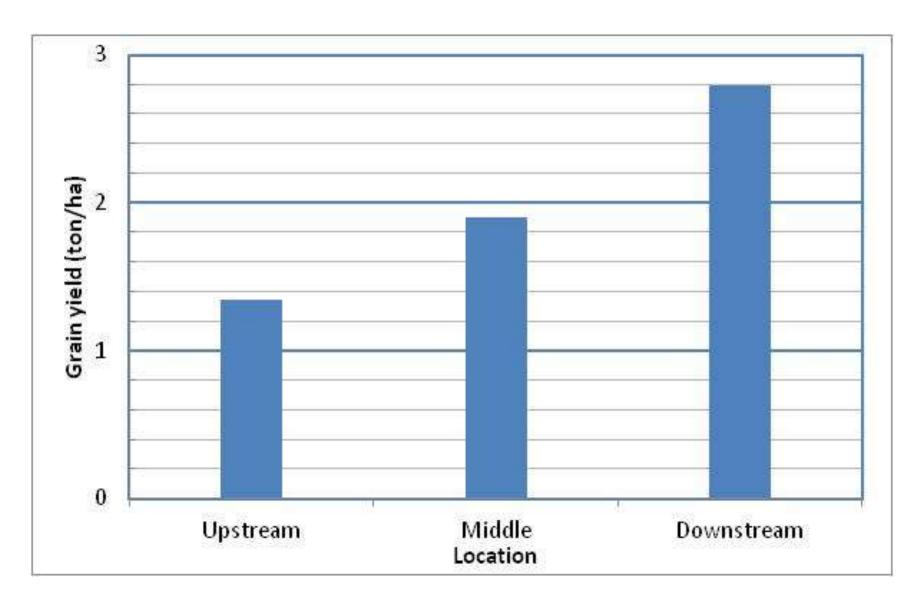
CAPILLARY RISE EFFECTS

Stored moisture moves upwards in cold season providing sub-irrigation

Recharge

Frost heave

- Freezing temperatures
- High water tables
- Frost susceptible soils
 - Salty soils
 - Non compacted clays
 - No gravels or non swelling clay layers


From: Ali M. Adeeb

Effect of Land Inundation Period on Spate Irrigated Sorghum Yield in Gash Delta, Sudan

- Mesqa = 7600 meter long.
- Non-uniform coverage
- More than 27% of the misga area was not irrigated.

- The mean wetting front (downward percolation) reached
- 2.7 m, upstream
- 2.07 m, middle
- 1.43 m, downstream

Grain Yield

Site	Yield (ton/ha)	Water (mm)	Productivity (kg/mm)
Upstream	1.34	663.60	2.02
Middle	1.90	542.01	3.51
Downstream	2.79	412.80	6.76

Water spreading through guide bunds

Link to other studies

- Link to water allocation/irrigation scheduling (different soils with different irrigation requirements and production potentials)
- Link to groundwater recharge (risk of surface sealing and effect on soil biota)

Two quick supplementary studies

- 1. Quality of sediment (Gash system transects)
 - Organic content (first flush)
 - Grain-size distribution
 - Micro-nutrient distribution (Fe, Se, Zn, I)
- 2. Link between soil moisture and micro-climate
 - Temperature in/outside system (Gash Dy) including relation fluctuation-moisture

Distribution varies

Zn 2 Selene Se **MICRONUTRIENTS** 3 Iodium Fe 4 Iron

1 Zinc

- Clay soils % availability is lower
- Acidity affects availability differently for different micro-nutrients

Total vs. available micronutrient for uptake by plants

SOIL MOISTURE TO SOIL TEMPERATURE

- ALBEDO (COLOUR)
- Wet sand albedo > dry sand
 - Hence absorb more solar energy

HEAT PER VOLUME

- increase with water content
- heating/cooling off is less in wet than in dry soils
- HEAT CONDUCTIVITY
 - Increase with water content
 - Heat used in evaporation > temperature down
 - Heat used in dew formation > temperature down

Very wet and very dry soils do not heat up easily

Activity		
Transect of farmers/ focus group discussions	Soil classification Understanding of soil processes: - Presence of soil biota in different soils - Nitrogen fixation - First flushes - Soil temperature - Capillary rise - Overirrigation - Link with microclimate	
Overall soil mapping (incl micro nutrient)	Check existing studies	
Pilot area and control area and detailed soil moisture and nitrogen	Depth and spread over time of soil moisture, soil temperature	
Special studies	Quick micro climate comparison Sediment quality transect Soil life	