

Project launch in Sudan: Harnessing Floods For Enhanced Livelihoods and Ecosystem Services

Defining the Research Programme

Day 2: 28 April 2015

Today's Programme at a Glance

9:30 to 9:40: Framing the research programme: Dr. Abraham

9:40 to 10:00: Water Allocation: RIBASIM Model: Prof. Yasir

10:00 to 10:20: Groundwater modeling – the MODFLOW: Kebir

10:20 to 10:45: Discussion

10:45 to 11:00 : Coffee break

11:00 to 11:20: Field experiment – efficient distribution & use of soil

moistures; and other ecosystems services: Dr. Frank

11:20 to 11:30: Irrigation scheduling and AQUACROP model: Dr. Abraham

11:30 to 12:10: Discussion

12:10 to 12: 40: Communication strategies: Ahmed and Mathijs

12: 40 to 13:40: Lunch break

The Research Programme framework

How much is the available groundwater resources?

Improved domestic water supply and use

What is the optimum water allocation and distribution?

Strengthened capacity & better livelihood of women

Improved livestock producti<u>on</u> Objective:

Water and Food security, healthy ecosystem and improved livelihood Higher agricultural production

sediment, soil fertility, soil biota microclimat e

What is the optimum mesgha canal, most efficient irrigation scheduling & soil moisture utilization?

Enhancing the biodiversity & livelihoods downstream (Gash die)

Can we enhance the biodiversity especially downstream (Gash Die) and how are these affected by developments upstream?

AQUACROP Modeling

to answer the research question

What is the optimum irrigation scheduling for more efficient use of soil moisture and higher agricultural productivity

WHAT IS AQUACROP MODEL AND WHAT CAN IT SIMULATE?

- AquaCrop is a publicly available crop water productivity model developed by the Land and Water Division of FAO.
- It simulates yield response to climate, water, soil type and fertility, water logging, salinity (water salinity)
- It is particularly suited to address conditions where water is a key limiting factor in crop production.
- Assess yield under different irrigation schedules and irrigation systems
- As a benchmarking tool, comparing the attainable yields against actual yields of a field, farm, or region, to identify the yield gap and the constraints limiting crop production

WHAT SETS IT APART FROM CROPWAT?

- Separates Biomass and Yield
- Partitions Transpiration and Evaporation
- Analyses the effect of temperature, nutrients, irrigation water quality on biomass and yield
- Provides opportunities for evaluating the impact of various field water management practices

WHAT SETS IT APART FROM CROPWAT?

- Separates Biomass and Yield
- Partitions Transpiration and Evaporation
- Analyses the effect of temperature, nutrients, irrigation water quality on biomass and yield
- Provides opportunities for evaluating the impact of various field water management practices

WHAT ARE THE INPUT PARAMETERS AND ARE THEY AVAILABLE?

Climate data

Primary data – collected from a local metreoroligical station

Secondary data:

- Personally collected from specific metrological station
- Climwat
 (http://www.fao.org/nr/water/infores-databases-climw-at.html)
- NewLocClim (http://www.fao.org/nr/climpag/pub/en0201_en.asp)